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Abstract

The diagnosis of mild cognitive impairment (MCI), which is deemed a formative phase

of dementia, may greatly assist clinicians in delaying its headway toward dementia.

This article proposes a deep learning approach based on a triploid genetic algorithm, a

proposed variant of genetic algorithms, for classifyingMCI converts and non-converts

using structural magnetic resonance imaging data. It also explores the effect of the

choice of activation functions and that of the selection of hyper-parameters on the per-

formance of the model. The proposed work is a step toward automated convolutional

neural networks. The performance of the proposed method is measured in terms of

accuracy and empirical studies exhibit the preeminence of our proposed method over

theexistingones. Theproposedmodel results in amaximumaccuracyof 0.97961. Thus,

it may contribute to the effective diagnosis of MCI andmay prove important in clinical

settings.

KEYWORDS

convolutional neural networks, deep learning, magnetic resonance imaging, mild cognitive
impairment, triploid genetic algorithm

1 NARRATIVE

Mild cognitive impairment (MCI) is considered the asymptomatic or

preclinical stage in progressive cognitive decline leading to the more

severe stage in dementia.1,2 MCI is characterized by problems with

memory, language, thinking, and judgment that are greater thannormal

age-related changes.3,4 Symptoms ofMCImay progress to Alzheimer’s

disease (AD) or another type of dementia, or remain stable for years, or

even improve over time.5 The annual conversion rate of MCI to AD is

≈15%.6

The challenge of accurate classification of MCI-converts (MCI-C)

andMCI-non-converts (MCI-NC) is the central focusof this article; pre-

cision in the classification of asymptomatic people at potential risk is

a vital need for future prevention studies or interventions to slow the

progression of dementia and so apposite steps can be taken for slowing

its headway toward dementia.

MCI can be detected by either clinical tests or brain scans. A medi-

cal professional can judge cognitive and behavioral changes and make

a professional judgment about the presence or absence of MCI, by

assessing the possible causes and the severity of the symptoms.4 In

recent years, numerous brain imaging modalities such as functional

magnetic resonance imaging (fMRI),7 positron emission tomography

(PET),8 structural-magnetic resonance imaging (s-MRI),9–17 and so on

have been used for diagnosing MCI. Brain-imaging studies show that

the shrinkage of graymatter may be associated withMCI.18

Manual detection of MCI is not just time-consuming but may also

be expensive and inconvenient. Many techniques have been proposed

by themachine learning (ML) community to accomplish the above clas-

sification task. Conventional feature extraction methods have been

successfully applied19–23 to achieve this goal. These techniques have

their advantages anddownsides andmaymiss out on somediscriminat-

ing patterns. Deep learning techniques parameterize multi-layer neu-

ral networks and learn the representation of data with multiple lay-

ers of abstraction.24 The major difference between the conventional

machine learning methods and deep learning algorithms is that the

latter do not require feature extraction or selection, need little or no
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image pre-processing, and generally result in a more objective classi-

fication. Convolutional neural networks (CNN) are architectures that

encode certain properties of the input, assumed to be images, into the

architecture.25 This not only reduces the number of parameters to a

great extent but alsomakes the networks efficient. The performance of

the CNN model depends on the number of filters, choice of activation

functions, and thenumber of units in thedense layer if the coarse struc-

ture of the network is known. The deep architectures perform bet-

ter but are computationally expensive to train whereas shallow ones

are computationally less expensive but may not perform aptly, if not

crafted with due deliberation. While most of researchers decide the

parameters of the CNN architectures using empirical analysis, auto-

mated networks have been used by some researchers.26

This work uses a proposed variant of the genetic algorithm (GA),

called the triploid genetic algorithm (TGA), to find these hyper-

parameters. The work also explores the applicability of a recently pro-

posed periodic activation function for implicit neural representation.27

This work also explored diploid genetic algorithms (DGA) for finding

the hyper-parameters of a coarse CNN. To the best of our knowledge,

no one has applied DGA for this task. The performance of the pro-

posed method is judged against existing methods on publicly available

Alzheimer’s Disease Neuroimaging Initiative (ADNI) data. Experimen-

tal results suggest that the proposed model can extract relevant fea-

tures to classifyMCI-C andMCI-NC.

Empirical analysis suggests that TGA performs better than DGA. It

was alsoobserved thatDGAsperformbetter compared toGAs for clas-

sifying MCI-C and MCI-NC volumes. Based on the results, it may be

stated that activation functions affect the performance of the model.

The proposedmodel shows superior performance vis-à-vis the conven-

tional machine learningmethods also.

Like other methods, the proposed model may not work for all

datasets. In futurework,weaim toexploreploidy further to achieve the

goal of a fully automated CNN. Also, the performance of the proposed

model depends on the crossover rate, themutation rate, and themodel

is also computationally expensive. In addition to this, other unexplored

activation functions may also improve the performance of the classifi-

cation ofMCI.

2 CONSOLIDATED RESULTS AND STUDY
DESIGN

Data used in the preparation of this article were obtained from the

ADNI database (adni.loni.usc.edu). The ADNI was launched in 2003

as a public–private partnership, led by Principal Investigator Michael

W. Weiner, MD. The primary goal of ADNI has been to test whether

MRI, PET, other biologicalmarkers, and clinical and neuropsychological

assessment can be combined tomeasure the progression ofMCI and to

detect AD at an early stage.28

The ADNI database was queried forMCI-C andMCI-NC. This study

uses 75MCI-C and 112MCI-NC processed Neuroimaging Informatics

Technology Initiative images of patients. The protocol of data selection

and image acquisition of the subjects has been adopted from Salvatore

RESEARCH INCONTEXT

1. Systematic review: The Classification of MCI has been

doneusingboth conventionalMachine Learningmethods,

involving various feature extraction and feature selec-

tion techniques, and the Deep Learning methods. The

research works that used Deep Learning, particularly

CNN, can be further divided into two classes: those

involving manually crafted CNN’s26 and those involv-

ing the automated CNN’s. In the former, the hyper-

parameters like the number of filters etc. are found man-

ually using empirical analysis, whereas in the latter some

search technique like Genetic Algorithm has been used

to find these hyper-parameters. The proposed method

usesTGAto find thesehyperparameters. Themethodalso

takes into consideration the effect of activation functions

on the performance of the model. Table 7 compares the

performance of the proposed method, in terms of accu-

racy,with the stateof the art. Theproposedalgorithmwas

implemented, and the experiments conducted brought

forth some interesting points, discussed in the following

subsection.

2. Interpretation: The contributions of this work are as fol-

lows:

1. The development of a variant of Genetic Algorithm,

called Triploid Genetic Algorithm, which performs

better as compared to GA, and the three stated vari-

ants of DGA, for the classification ofMCI.

2. The development of a framework to find the hyper-

parameters of a CNN, whose course structure is

known. These hyper-parameters are selected on the

basis of the given data.

3. The work empirically proves that activation function

plays an important part in the recital of a CNN. This

work also explores the applicability of recently pro-

posed SIREN activations.

3. Future scope: This work proposes a triploid to haploid

conversion, for finding the hyper-parameters of CNN. In

the future work, we aim to explore poly-ploidy, and carry

out an extensive empirical analysis to find which, if any

works well. To further this task we aim to use three dif-

ferent classification problems: MCI-C and MCI-NC, MCI

and CN, andMCI-AD.

et al.29 and takes into consideration age matching, required parame-

ters, and so on. All patients had aMini-Mental State Examination score

between 18 and 27 and a Clinical Dementia Rating score of 0.5 or 1.

TheT1weighted s-MRI images collected had the following parameters:

TR = 3000 ms, TE = 3.6099 ms, and field strength = 1.5 Tesla. Table 1

shows the demographic information of the patients.
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TABLE 1 Demographic information of the subjects

Group MCI-NC (n= 112) MCI-C (n= 75)

Female/Male 51/61 33/42

Age (Mean± SD) 74.83± 7.34 74.69± 7.28

Abbreviations: MCI-C, mild cognitive impairment converts; MCI-NC, mild

cognitive impairment non-converts; SD, standard deviation

s-MRI has been generally used to identify MCI.10–20 The process

begins with pre-processing, for which statistical parametric mapping

(SPM) is generally used.30 The steps in the pre-processing of the s-MRI

images include the following: (1) slice time correction, (2) head motion

correction, (3) spatial normalization, (4) special smoothening, and (5)

tissue segmentation, inwhich the brain tissues are separated into three

tissue classes—namely gray matter, white matter, and cerebrospinal

fluid. This work uses gray matter for building an ML-based model to

diagnose MCI as its change has been found responsible for MCI in the

literature.18

This work uses a CNN architecture that has three convolution lay-

ers. Each convolution layer is followed by an optional pooling layer.

There are two fully connected layers, followed by a SoftMax. In the

proposed model 30 slices from the top and 30 from the bottom were

removed from each volume. Themodel extracts the feature vector of a

given volume as follows. For each slice, the output of the penultimate

layer is extracted. These are horizontally concatenated to form the fea-

ture vector of the volume. This is followed by feature selection using

Fisher discriminant ratio (FDR). The Support Vector Machine (SVM) is

used to classify the volumes using the feature set so obtained. To han-

dle the problem of limited data, augmentation is used with dropout to

prevent over-fitting. The TGA is used to find the number of filters, size

of the filters, presence or absence of pooling, and the activation func-

tion. This work also explores the applicability of the recently proposed

SIREN activations in CNN.27 In one of our earlier works, a manually

crafted CNN was created in which the number of filters, and the num-

ber of units in the fully connected layers were determined using empir-

ical analysis. The maximum accuracy obtained from that network was

0.8897, with sigmoid activation. The activation functions ReLU, tanh,

and sin yieldedanaccuracyof0.9163, 0.8532, and0.9210, respectively,

thus suggesting the role of activation functions on the performance of

amodel.

In the first experiment, GA was used to find the number of filters

in the two convolutional layers, their size, and whether pooling is

required. In addition, the number of units in the two fully connected

layerswas also decidedusingGA.Anaccuracyof 0.95017wasobtained

in 16 generations. This was followed by the application of the DGA

for finding these hyper-parameters. The application of Ng-Wong31

scheme resulted in an accuracy of 0.95248. The application of Ryan32

andYang schemes ofDGA46 yielded accuracies of 0.9569 and0.96296,

respectively, in fewer generations (the last one in 11 generations).

The proposed TGA gave an accuracy of 0.9796 in seven generations.

The above experiments were conducted for mutation rate 0.02 and

crossover rate 0.40. The comparison of the accuracy of the proposed

model with the existing models is presented in Table 2. It can be

observed from the table that the proposed method performs well in

terms of accuracy for theMCI-C versusMCI-NC data compared to the

state-of-the-art.

From the above results the following points can be concluded:

∙ TGA performs better than DGA.

∙ Among different variants of DGA, the Yang scheme results in the

best performance.

∙ DGA, in general, performs better compared toGA, for the classifica-

tion ofMCI.

∙ Choice of activation functions affects the performance of amodel.

∙ For this data, the sin activation gives the best performance.

∙ The choice of hyper-parameters affects the recital of a CNN archi-

tecture.

However, this study is carried out at a particular crossover rate and

mutation rate. Further, the coarse structure of the CNN was chosen

after empirical analysis. The hierarchical TGA-CNN being developed

will find the coarse structure and the parameters of the GA as well.

The above method is also applied for the classification of MCI and AD

patients. The results suggest that the method can be used for the clas-

sification ofMCI, in general.

3 DETAILED METHODS

GAs are heuristic search algorithms based on the theory of natural

selection.39 The simple GA uses the brilliance of biological genetics

and depends on crossover, mutation, and reproduction with a slender

disparity in the algorithm meta-structure. In GA, the fitter chromo-

somes have greater representation in future generations. They have

been extensively used for optimization and selection problems and

have demonstrated their superiority time and again. However, these

algorithms have been proved better for solving a problem in which the

fitness evaluation is measurable against a schedule of static costs but

problems with dynamic fitness evaluations have been only diffidently

advancedwith GA.40,41

In nature, the cells contain different sets of chromosomes, which

is called ploidy.42 In the case of a pair of chromosomes, a character-

istic of the cells given by an allele is determined based on the pheno-

type using the dominant or recessive character of the respective gene,

and the genetic information thus determinedwill be transmitted to the

offspring.42 This leads to the transfer of greater diversity of character-

istics to the offspring in complex organisms. The prevalent versions of

GAs, however, use haploid representation, which retains only one set

of each gene, possibly because of ease of implementation.

Goldberg observed that diploid populations were able to adapt to

changing environments more readily than haploid populations.41 For

diploid-to-haploid conversion, a dominance scheme is used, one of

which is by the triallelic map created by Hollstein.43 In the scheme, the

cardinality of the population is three and thedominance schemegener-

ates a 1 if the sum of alleles is 2 or greater; otherwise, a 0 is generated

(Table 3).
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TABLE 2 Comparison of performance of the proposedmethodwith existing works

Machine learningmethods Deep learningmethods

Method Accuracy (%) Method Accuracy (%)

Gerardin et al. (2009)9 83.00 Basaia et al. (2019)33 75.10

Chupin et al. (2009)10 64.21 Suk et al. (2017)34 74.82

Carlton Chu et al. (2011)11 65.00 Li et al. (2015)26 57.40

Dai et al. (2013)12 71.04 Singh et al. (2017)35 72.47

Chong-YawWee et al. (2013)13 71.67 Lu et al. (2018)36 82.93

Tong et al. (2014)14 72.00 Lu et al. (2018)37 75.44

Ahmed et al. (2015)15 68.72 Ortiz et al. (2016)38 82.00

Liu et al. (2018)16 72.08 Proposedmodel 97.961

TABLE 3 Hollstein’s triallelic map

_ 0 1 2

0 0 0 1

1 0 1 1

2 1 1 1

TABLE 4 Ng,Wong scheme

_ O i 0 1

o 0 0/1 0 1

i 0/1 1 0 1

0 0 0 0 0/1

1 1 1 0/1 1

TABLE 5 Ryan scheme

_ A B C D

A 0 0 0 1

B 0 0 0 1

C 0 0 1 1

D 1 1 1 1

Eshelman and Schafferwere able to establish, using the atmosphere

and metabolism problem, the ability of GA with diploidy and domi-

nance to create dynamically stable systems without a loss of fitness.44

Ng and Wong used four genotypic alleles and employed randomness

when both alleles were dominant or both were recessive.31 That is,

dominant alleles “0” and “1” may produce a “0” or a “1” (Table 4). The

major problem in this approach was uncertainty. Ryan proposed an

additive dominance scheme in which genotypic alleles are represented

by ordered values that are combined using pseudo-arithmetic to deter-

mine the phenotypic allele.32 The dominance map proposed by Ryan

is shown in Table 5. Yang and Yao45 proposed an adaptive dominance

mechanism. According to them the cardinality of the genotypic alle-

les and the uncertainty in the dominance scheme are the two key fac-

F IGURE 1 The formation of a child chromosome in the proposed
dominance scheme

tors that affect the performance of the technique.45 They carried out

experiments with the help of a tool developed in one of Yang’s earlier

works46,47 and proved that dominance scheme is better than previous

ones.

In addition to haploids and diploids, triploids also exist. For exam-

ple, a banana has three sets of chromosomes, two sets from one par-

ent and one set from the other parent. Triploids seldom produce eggs

or sperm that have a balanced set of chromosomes and so a success-

ful seed set is very rare.48 Note that bananas are parthenocarpic, that

is, fruit developedwithout fertilization. The parthenocarpic fruits have

some remarkable properties, such as longer shelf life.

The proposed technique of obtaining a chromosome from three

chromosomes is depicted in Figure 1. The process and the correspond-

ing formulahavebeen statedas follows. Theproposeddominance tech-

niqueuses three chromosomes todetermine the child. In thediscussion
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TABLE 6 The proposed dominance scheme

Chromosome 1 Chromosome 2

Determining

chromosome Child

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

that follows, the first parent is referred to as “chromosome 1,” the sec-

ond as “chromosome 2.” The chromosome that determines the domi-

nance is referred to as “the determining chromosome.” If the cells in

both the chromosomes are “1,” the corresponding child would be “1,”

irrespective of the value of the cell in the determining chromosome.

Likewise, if both the cells are “0,” the cell in the child would be “0.” In

case the two cells are “1”and “0,” the output would be determined by

the “determining chromosome.” Value “1” in the determining chromo-

somewould result in a “1,”whereas “0” in thedetermining chromosome

would lead to a “0” in the child. The possible combinations are shown in

Table 6.

The bit in the child chromosome (C) can, therefore, be expressed in

terms of the corresponding bit in chromosome 1 (C1), chromosome 2

F IGURE 2 The proposed dominance scheme based diploid genetic
algorithm

(C2), and determining chromosome (D) as follows (Formula 1).

C = C1.C2 + C1.D + C2.D (1)

The above schema is used to convert triploid to haploid in TGA.

The steps of TGA are as follows. First, some random chromosomes are

generated. For example, if initially 3n chromosomes are taken, then n

chromosomes are obtained after applying the dominance technique.

The process of crossover is then applied. This is followed by mutation.

Finally, the “fit” individuals proceed to the next generation, after selec-

tion. The process is depicted in Figure 2.

Theproposed schemedoesnot yield uncertain results and therefore

handles the problem pointed out by Yang; also, the cardinality is low

compared to the others.

Given the coarse structure of a CNN (the number of convolutional

layers and the number of dense layers), the work aims to find the

F IGURE 3 An example of a chromosome used in this work. FC, fully connected
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F IGURE 4 Steps for finding accuracy for each chromosome.MCI-C, mild cognitive impairment converts; MCI-NC, mild cognitive impairment
non-converts; MRI, magnetic resonance imaging
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number of filters, their size, the presence or absence of pooling layers,

and the activation functions using GA and its variants. This work uses

chromosomes represented as a binary string. A chromosome has three

components: the first component gives information regarding the con-

volutional layers, the secondcomponent thenumberof units in the fully

connected layers, and the third discloses the activation function. Fur-

ther, the first component has nc partswhere nc is the number of convo-

lutional layers. Each part has three subparts: the first tells the number

of filters, the second their size, and the third represents thepresenceor

absence of the pooling. The second component has nfc parts, where nfc
is the number of fully connected layers. Each part tells the number of

units in the fully connected layers. The last component represents the

activation function.

It may be noted that for each part the maximum and minimum

limit would determine the number of cells. For example, if n1 ≤

n filters in convlayer ≤ n2, then find the smallest n so that, n2 − n1 ≤ 2n. The

number of cells in the subpart will be n.

The decoding of this cell would be done as follows:

out =

⌊
n1 +

the decimal equivalent of the value in the subpart
2n − 1

× (n2 − n1)

⌋

where, ⌊ ⌋ is the greatest integer function. Figure 3 depicts an example

of a chromosome used in the work. In the example, the number of con-

volutional layers is three and the number of dense layers is two.

This work uses the roulette wheel selection. The experiments

are conducted using 1-point and 2-point crossover. The purpose of

mutation is to prevent the GA from converging to local optima,

but if the mutation rate is high, the GA is changed to random

search.39

The fitness function used in the work is as follows:

fitness = k × accuracy.

The proposed framework is summed up as follows.

For the given data:

1. Divide the data into train and test sets.

2. Generate the initial population of TGA and craft the CNN architec-

ture accordingly.

3. For each generation, carry out the following steps for eachMRI vol-

ume in the train set:

a. For each slice of theMRI volume, obtain the feature vector using

the output of the penultimate layer of the above network.

b. Concatenate the feature vectors of each slice horizontally to

obtain the feature vector of the volume. This would be used for

the classification using the SVM.

4. Place the FDR) values of the features obtained from step 3 in

the decreasing order. The testing phase would use the indices so

obtained.

5. Use the SVM to train themodel using the train set.

6. The procedure stated in step 3 is then applied for the test-set. Use

the indices obtained in step 4 to obtain the relevant features.

7. Obtain the accuracy of the proposedmethod.

TABLE 7 Performance of heuristic search algorithms inMCI-C ad
MCI-NC classification

Algorithm Accuracy Generations

Triploid genetic algorithms 0.97961 7

Yang scheme 0.96296 11

Ryan scheme 0.95691 14

Ng-Wong 0.95248 14

Simple genetic algorithm 0.95017 16

Abbreviations: MCI-C, mild cognitive impairment converts; MCI-NC, mild

cognitive impairment non-converts.

8. Apply crossover and mutation operations and for the new pop-

ulation carry out steps 3 to 7, until the termination condition is

reached.

The steps of finding fitness for each chromosome, are shown in Fig-

ure 4. The results have been summarized in Table 7.

4 CONCLUSION

The performance of a CNN depends on the choice of hyper-

parameters. Manually choosing these may not result in the optimal

architecture. This work uses a proposed variant of GA called TGA to

find the parameters of a CNN. The role of the activation function, par-

ticularly SIREN activation, on the performance of the network is also

explored in the work. The performance of the proposed model is bet-

ter compared to the existing models. However, the results depend on

the choice of crossover rate and mutation rate. Also, if the volume

of the input tensor is reduced, while retaining most of the informa-

tion, the computation time of the proposed algorithm will be dras-

tically reduced. Moreover, the depth of the network may also affect

the results but may lead to vanishing gradients. Finally, the concept of

ploidy can be further explored.

For the first part, we aim to develop a hierarchical GA that finds the

parameters and the hyper-parameters of the given CNN for the clas-

sification of a given dataset. To reduce the volume of the input tensor,

we have developed a principal component analysis–CNN–basedmodel

that reduces the input volume while retaining the information regard-

ing the correlation between the slices of the brain. The problem of van-

ishing gradient in the model will be handled using a parallel model like

in the case of inception. The future work aims to develop a model that

reduces the volume of the input tensor, while retaining most of the

information, and to use a parallel-inception type network, to classify

MCI. Hierarchical TGA will be used to choose the parameters of the

network.
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